\(\int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx\) [288]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 92 \[ \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {a^3 x}{2}-\frac {3 a^3 \text {arctanh}(\cos (c+d x))}{d}+\frac {3 a^3 \cos (c+d x)}{d}-\frac {a^3 \cos ^3(c+d x)}{3 d}-\frac {a^3 \cot (c+d x)}{d}+\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d} \]

[Out]

1/2*a^3*x-3*a^3*arctanh(cos(d*x+c))/d+3*a^3*cos(d*x+c)/d-1/3*a^3*cos(d*x+c)^3/d-a^3*cot(d*x+c)/d+3/2*a^3*cos(d
*x+c)*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2788, 3855, 3852, 8, 2718, 2715, 2713} \[ \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {3 a^3 \text {arctanh}(\cos (c+d x))}{d}-\frac {a^3 \cos ^3(c+d x)}{3 d}+\frac {3 a^3 \cos (c+d x)}{d}-\frac {a^3 \cot (c+d x)}{d}+\frac {3 a^3 \sin (c+d x) \cos (c+d x)}{2 d}+\frac {a^3 x}{2} \]

[In]

Int[Cot[c + d*x]^2*(a + a*Sin[c + d*x])^3,x]

[Out]

(a^3*x)/2 - (3*a^3*ArcTanh[Cos[c + d*x]])/d + (3*a^3*Cos[c + d*x])/d - (a^3*Cos[c + d*x]^3)/(3*d) - (a^3*Cot[c
 + d*x])/d + (3*a^3*Cos[c + d*x]*Sin[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2788

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Dist[a^p, Int[Expan
dIntegrand[Sin[e + f*x]^p*((a + b*Sin[e + f*x])^(m - p/2)/(a - b*Sin[e + f*x])^(p/2)), x], x], x] /; FreeQ[{a,
 b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p/2] && (LtQ[p, 0] || GtQ[m - p/2, 0])

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \left (2 a^5+3 a^5 \csc (c+d x)+a^5 \csc ^2(c+d x)-2 a^5 \sin (c+d x)-3 a^5 \sin ^2(c+d x)-a^5 \sin ^3(c+d x)\right ) \, dx}{a^2} \\ & = 2 a^3 x+a^3 \int \csc ^2(c+d x) \, dx-a^3 \int \sin ^3(c+d x) \, dx-\left (2 a^3\right ) \int \sin (c+d x) \, dx+\left (3 a^3\right ) \int \csc (c+d x) \, dx-\left (3 a^3\right ) \int \sin ^2(c+d x) \, dx \\ & = 2 a^3 x-\frac {3 a^3 \text {arctanh}(\cos (c+d x))}{d}+\frac {2 a^3 \cos (c+d x)}{d}+\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d}-\frac {1}{2} \left (3 a^3\right ) \int 1 \, dx-\frac {a^3 \text {Subst}(\int 1 \, dx,x,\cot (c+d x))}{d}+\frac {a^3 \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {a^3 x}{2}-\frac {3 a^3 \text {arctanh}(\cos (c+d x))}{d}+\frac {3 a^3 \cos (c+d x)}{d}-\frac {a^3 \cos ^3(c+d x)}{3 d}-\frac {a^3 \cot (c+d x)}{d}+\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.15 \[ \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {a^3 \csc \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \left (\cos (c+d x) (15-66 \sin (c+d x))-12 \left (c+d x-6 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+6 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin (c+d x)+\cos (3 (c+d x)) (9+2 \sin (c+d x))\right )}{48 d} \]

[In]

Integrate[Cot[c + d*x]^2*(a + a*Sin[c + d*x])^3,x]

[Out]

-1/48*(a^3*Csc[(c + d*x)/2]*Sec[(c + d*x)/2]*(Cos[c + d*x]*(15 - 66*Sin[c + d*x]) - 12*(c + d*x - 6*Log[Cos[(c
 + d*x)/2]] + 6*Log[Sin[(c + d*x)/2]])*Sin[c + d*x] + Cos[3*(c + d*x)]*(9 + 2*Sin[c + d*x])))/d

Maple [A] (verified)

Time = 0.25 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.02

method result size
derivativedivides \(\frac {-\frac {a^{3} \left (\cos ^{3}\left (d x +c \right )\right )}{3}+3 a^{3} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+3 a^{3} \left (\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+a^{3} \left (-\cot \left (d x +c \right )-d x -c \right )}{d}\) \(94\)
default \(\frac {-\frac {a^{3} \left (\cos ^{3}\left (d x +c \right )\right )}{3}+3 a^{3} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+3 a^{3} \left (\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+a^{3} \left (-\cot \left (d x +c \right )-d x -c \right )}{d}\) \(94\)
parallelrisch \(-\frac {a^{3} \left (9 \cot \left (\frac {d x}{2}+\frac {c}{2}\right ) \cos \left (2 d x +2 c \right )-18 \cot \left (\frac {d x}{2}+\frac {c}{2}\right ) \cos \left (d x +c \right )-6 \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )-6 d x -36 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-33 \cos \left (d x +c \right )+\cos \left (3 d x +3 c \right )+21 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )-32\right )}{12 d}\) \(112\)
risch \(\frac {a^{3} x}{2}-\frac {3 i a^{3} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}+\frac {11 a^{3} {\mathrm e}^{i \left (d x +c \right )}}{8 d}+\frac {11 a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{8 d}+\frac {3 i a^{3} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}-\frac {2 i a^{3}}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}-\frac {3 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}+\frac {3 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}-\frac {a^{3} \cos \left (3 d x +3 c \right )}{12 d}\) \(157\)
norman \(\frac {\frac {4 a^{3} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a^{3}}{2 d}+\frac {2 a^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a^{3} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a^{3} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {a^{3} x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2}+\frac {3 a^{3} x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {3 a^{3} x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {a^{3} x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {12 a^{3} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {16 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {3 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(234\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)^2*(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/3*a^3*cos(d*x+c)^3+3*a^3*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+3*a^3*(cos(d*x+c)+ln(csc(d*x+c)-cot
(d*x+c)))+a^3*(-cot(d*x+c)-d*x-c))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.32 \[ \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {9 \, a^{3} \cos \left (d x + c\right )^{3} + 9 \, a^{3} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 9 \, a^{3} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 3 \, a^{3} \cos \left (d x + c\right ) + {\left (2 \, a^{3} \cos \left (d x + c\right )^{3} - 3 \, a^{3} d x - 18 \, a^{3} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, d \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/6*(9*a^3*cos(d*x + c)^3 + 9*a^3*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 9*a^3*log(-1/2*cos(d*x + c) + 1/
2)*sin(d*x + c) - 3*a^3*cos(d*x + c) + (2*a^3*cos(d*x + c)^3 - 3*a^3*d*x - 18*a^3*cos(d*x + c))*sin(d*x + c))/
(d*sin(d*x + c))

Sympy [F]

\[ \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx=a^{3} \left (\int \cos ^{2}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}\, dx + \int 3 \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}\, dx + \int 3 \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}\, dx + \int \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**2*(a+a*sin(d*x+c))**3,x)

[Out]

a**3*(Integral(cos(c + d*x)**2*csc(c + d*x)**2, x) + Integral(3*sin(c + d*x)*cos(c + d*x)**2*csc(c + d*x)**2,
x) + Integral(3*sin(c + d*x)**2*cos(c + d*x)**2*csc(c + d*x)**2, x) + Integral(sin(c + d*x)**3*cos(c + d*x)**2
*csc(c + d*x)**2, x))

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.01 \[ \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {4 \, a^{3} \cos \left (d x + c\right )^{3} - 9 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{3} + 12 \, {\left (d x + c + \frac {1}{\tan \left (d x + c\right )}\right )} a^{3} - 18 \, a^{3} {\left (2 \, \cos \left (d x + c\right ) - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{12 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/12*(4*a^3*cos(d*x + c)^3 - 9*(2*d*x + 2*c + sin(2*d*x + 2*c))*a^3 + 12*(d*x + c + 1/tan(d*x + c))*a^3 - 18*
a^3*(2*cos(d*x + c) - log(cos(d*x + c) + 1) + log(cos(d*x + c) - 1)))/d

Giac [A] (verification not implemented)

none

Time = 0.45 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.76 \[ \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {3 \, {\left (d x + c\right )} a^{3} + 18 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {3 \, {\left (6 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{3}\right )}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )} - \frac {2 \, {\left (9 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 36 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 9 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 16 \, a^{3}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(3*(d*x + c)*a^3 + 18*a^3*log(abs(tan(1/2*d*x + 1/2*c))) + 3*a^3*tan(1/2*d*x + 1/2*c) - 3*(6*a^3*tan(1/2*d
*x + 1/2*c) + a^3)/tan(1/2*d*x + 1/2*c) - 2*(9*a^3*tan(1/2*d*x + 1/2*c)^5 - 12*a^3*tan(1/2*d*x + 1/2*c)^4 - 36
*a^3*tan(1/2*d*x + 1/2*c)^2 - 9*a^3*tan(1/2*d*x + 1/2*c) - 16*a^3)/(tan(1/2*d*x + 1/2*c)^2 + 1)^3)/d

Mupad [B] (verification not implemented)

Time = 9.58 (sec) , antiderivative size = 264, normalized size of antiderivative = 2.87 \[ \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {3\,a^3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}+\frac {a^3\,\mathrm {atan}\left (\frac {a^6}{6\,a^6-a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {6\,a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{6\,a^6-a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d}+\frac {-7\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+8\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-3\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+24\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+3\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\frac {32\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}-a^3}{d\,\left (2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )} \]

[In]

int((cos(c + d*x)^2*(a + a*sin(c + d*x))^3)/sin(c + d*x)^2,x)

[Out]

(3*a^3*log(tan(c/2 + (d*x)/2)))/d + (a^3*atan(a^6/(6*a^6 - a^6*tan(c/2 + (d*x)/2)) + (6*a^6*tan(c/2 + (d*x)/2)
)/(6*a^6 - a^6*tan(c/2 + (d*x)/2))))/d + (a^3*tan(c/2 + (d*x)/2))/(2*d) + (3*a^3*tan(c/2 + (d*x)/2)^2 + 24*a^3
*tan(c/2 + (d*x)/2)^3 - 3*a^3*tan(c/2 + (d*x)/2)^4 + 8*a^3*tan(c/2 + (d*x)/2)^5 - 7*a^3*tan(c/2 + (d*x)/2)^6 -
 a^3 + (32*a^3*tan(c/2 + (d*x)/2))/3)/(d*(2*tan(c/2 + (d*x)/2) + 6*tan(c/2 + (d*x)/2)^3 + 6*tan(c/2 + (d*x)/2)
^5 + 2*tan(c/2 + (d*x)/2)^7))